The mir-675-5p regulates the progression and development of pancreatic cancer via the UBQLN1-ZEB1-mir200 axis

نویسندگان

  • Jue Wang
  • Youli Zhang
  • Hong Wei
  • Xingxing Zhang
  • Yan Wu
  • Aihua Gong
  • Yu Xia
  • Wenbing Wang
  • Min Xu
چکیده

Pancreatic cancer (PC) is a highly lethal disease due to extensive metastatic lesions. Accumulating evidence suggests that miR-675-5p plays different roles in metastasis through the regulation of epithelial to mesenchymal (EMT) and the mesenchymal to epithelial transitions (MET) in different cancers. ZEB1 promotes the EMT process by controlling the expression of E-cadherin and may have a reciprocal regulation with Ubiquilin1 (UBQLN1) and mir-200 family in cancer progression. In the present study, we showed that decreased expression of miR-675-5p is associated with the enhanced cell proliferation and survival of PC cells, while the increased expression of mir-675-5p shows the opposite one. The mir-675-5p could decrease the expression of mir-200 which is intermediated by ZEB1, and increase the expression of UBQLN1 gene. The mir-675-5p can increase the expression of ZEB1 mRNA, but the ZEB1 protein level was decreased. When mir-675-5p mimics and siUBQLN1 were co-transfected into the pancreatic cancer Patu8988 cells, the expression of ZEB1 protein was increased. It suggests that mir-675-5p may affect ZEB1 in a post-transcriptional level which was verified to be regulated by UBQLN1 protein. Hence, mir-675-5p regulates the progression of pancreatic cancer cells through the UBQLN1-ZEB1-mir200 pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-33-5p Regulates CREB to Induce Morphine State-dependent Memory in Rats: Interaction with µ Opioid Receptor

The aim of the present study was to examine the hypothesis that miR-33-5p attenuates morphine state-dependent (StD) memory via the µ opioid receptor by regulating cyclic AMP response element-binding protein (CREB). The effects of post-training morphine and morphine StD memory and their interaction with pre-test naloxone were evaluated using a single-trial inhibitory avoidance paradigm. Then, th...

متن کامل

MiR-675-5p supports hypoxia induced epithelial to mesenchymal transition in colon cancer cells

The survival rates in colon cancer patients are inversely proportional to the number of lymph node metastases. The hypoxia-induced Epithelial to Mesenchymal Transition (EMT), driven by HIF1α, is known to be involved in cancer progression and metastasis. Recently, we have reported that miR-675-5p promotes glioma growth by stabilizing HIF1α; here, by use of the syngeneic cell lines we investigate...

متن کامل

SNHG16/miR-140-5p axis promotes esophagus cancer cell proliferation, migration and EMT formation through regulating ZEB1

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignancies. Long noncoding RNAs (lncRNAs) have been identified to be associated with many diseases including tumors, and involved in the regulation of a wide array of pathophysiological processes. Small nucleolar RNA host gene 16 (SNHG16), also known as noncoding RNA expressed in aggressive neuroblastoma, was newly identi...

متن کامل

miR-138-5p suppresses autophagy in pancreatic cancer by targeting SIRT1

The role of microRNA in the aberrant autophagy that occurs in pancreatic cancer remains controversial. Because hypoxia is known to induce autophagy, we screened for differentially expressed microRNAs using a miRNA microarray with pancreatic cancer cells cultured under normoxic and hypoxic conditions. We found that miR-138-5p was among the most downregulated miRNA in hypoxia-stimulated cells, an...

متن کامل

miR-302a-5p/367-3p-HMGA2 axis regulates malignant processes during endometrial cancer development

BACKGROUND Metastasis is one of the main reasons for treatment failure in endometrial cancer. Notably, high mobility group AT-hook 2 (HMGA2) has been recognized as a driving factor of tumour metastasis. microRNAs (miRNAs) are powerful posttranscriptional regulators of HMGA2. METHODS The binding sites of miR-302a-5p and miR-367-3p on HMGA2 mRNA were identified using bioinformatics prediction s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017